Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

M. Arun Prasad, ${ }^{\text {a* }}$
 Babu Varghese ${ }^{\text {b }}$ and M. V. Sangaranarayanan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India, and ${ }^{\mathbf{b}}$ Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai 600 036, India

Correspondence e-mail:
arunprasad@chem.iitm.ac.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
R factor $=0.057$
$w R$ factor $=0.147$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Bromo-1,3-dichloro-2-iodobenzene

The title compound, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{BrCl}_{2} \mathrm{I}$, crystallizes in space group $P 2_{1} / c$ with two molecules in the asymmetric unit. The molecules stack in two different directions, with their plane
 molecules of the asymmetric unit are held together by $\pi-\pi$ interactions.

Comment

The title compound, (I), was synthesized for a study of the electrochemical reductive cleavage of carbon-halogen bonds (Arun Prasad \& Sagaranarayanan, 2004). The average $\mathrm{C}-\mathrm{Cl}$ bond length is $1.735 \AA$, which is in excellent agreement with the normal value of $1.739 \AA$ (Allen et al., 1987). Likewise, the average $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{I}$ bond lengths of 1.879 and $2.086 \AA$ are in good agreement with the normal values of 1.899 and $2.095 \AA$ A , respectively (Allen et al., 1987). The halogen atoms are very slightly displaced from the benzene ring plane, as a result of steric repulsion; the largest deviation is 0.089 (3) \AA for atom I2. Such steric interactions between the halogens in polyhalobenzenes are well known (Solenova et al., 1960).

The asymmetric unit of (I) contains two molecules that are nearly parallel to each other, the angle between their plane normals being $10.82(5)^{\circ}$. The approximate perpendicular distance between the planes, $3.42 \AA$, is indicative of $\pi-\pi$ interactions. The asymmetric unit pairs stack along planes normal to [110] and [110]. The perpendicular distance of $3.87 \AA$ between the stacked pairs suggests that there is no extended $\pi-\pi$ interaction in the stacking direction.

Experimental

2,6-Dichloroaniline was brominated by passing bromine vapour into a solution of 2,6 -dichloroaniline (21 g) in hydrochloric acid (6 M , $120 \mathrm{ml})$. Solid 4-bromo-2,6-dichloroaniline was filtered off and purified by column chromatography (silica gel). 4-Bromo-2,6-dichloroaniline (30 g) was then diazotized in hydrochloric acid ($6 \mathrm{M}, 150 \mathrm{ml}$) using aqueous sodium nitrite ($15 \mathrm{~g} / 36 \mathrm{ml}$ water) and the resulting solution was slowly added to aqueous potassium iodide $(36 \mathrm{~g} / 45 \mathrm{ml}$

Received 8 September 2004 Accepted 23 September 2004 Online 9 October 2004

Figure 1
The asymmetric unit of the title compound, with the atomic numbering scheme. Displacement parameter ellipsoids are drawn at the 50% probability level.
water). When no further gas was evolved, the crude product was filtered off, and washed first with aqueous sodium hydroxide, subsequently with sodium metabisulphite and finally with water. 5-Bromo-1,3-dichloro-2-iodobenzene was separated and purified by column chromatography (silica gel) using hexane as the eluant; slow solvent evaporation produced X-ray quality crystals of (I).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{BrCl}_{2} \mathrm{I}$
$M_{r}=351.79$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.630(6) \AA$
$b=10.020(4) \AA$
$c=16.30(1) \AA$
$\beta=109.84(4)^{\circ}$
$V=1786.6(15) \AA^{3}$
$Z=8$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.361, T_{\text {max }}=1.000$ 3287 measured reflections 3125 independent reflections 1730 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.147$
$S=0.92$
3125 reflections
181 parameters
$D_{x}=2.616 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=8.58 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 11$
$l=-19 \rightarrow 18$
2 standard reflections frequency: 60 min intensity decay: none

[^0]

Figure 2
A packing diagram of the title compound, viewed down [110].

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, and were refined using the riding-model approximation, with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of the carrier atom. The largest residual electron-density peak is located $1.13 \AA$ from atom I1 and the deepest hole is located $1.20 \AA$ from atom I1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 in WinGX (Farrugia, 1999); program(s) used to solve structure: SIR92 in Win $G X$; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 in WinGX; software used to prepare material for publication: SHELXL97.

MAP thanks the CSIR, India, for the award of a Senior Research Fellowship. The authors gratefully acknowledge the instrumentation facility provided by SAIF, IIT, Madras.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arun Prasad, M. \& Sagaranarayanan, M. V. (2004). Tetrahedron Lett. 45, 4741-4744.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Solenova, S. L., Khotsyanova, T. L. \& Struchkov, Yu. T. (1960). Izv. Akad. Nauk SSSR Ser. Khim. pp. 322-330.

[^0]: H -atom parameters constrained
 $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0856 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=1.16 \mathrm{e}^{\AA^{-3}}$
 $\Delta \rho_{\min }=-1.71 \mathrm{e}^{-3}$

